Structure Constants for New Infinite-Dimensional Lie Algebras of U(N+, N−) Tensor Operators and Applications

نویسنده

  • M. Calixto
چکیده

The structure constants for Moyal brackets of an infinite basis of functions on the algebraic manifolds M of pseudo-unitary groups U(N+, N−) are provided. They generalize the Virasoro and W∞ algebras to higher dimensions. The connection with volumepreserving diffeomorphisms on M , higher generalized-spin and tensor operator algebras of U(N+, N−) is discussed. These centrally-extended, infinite-dimensional Lie-algebras provide also the arena for non-linear integrable field theories in higher dimensions, residual gauge symmetries of higher-extended objects in the light-cone gauge and C∗-algebras for tractable non-commutative versions of symmetric curved spaces. E-mail: [email protected] / [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Constants for New Infinite - Dimensional Lie Algebras of

The structure constants for Moyal brackets of an infinite basis of functions on the algebraic manifolds M of pseudo-unitary groups U (N + , N −) are provided. They generalize the Virasoro and W ∞ algebras to higher dimensions. The connection with volume-preserving diffeomorphisms on M , higher generalized-spin and tensor operator algebras of U (N + , N −) is discussed. These centrally-extended,...

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

Generalized W∞ Higher-Spin Algebras and Symbolic Calculus on Flag Manifolds

We study a new class of infinite-dimensional Lie algebras W∞(N+, N−) generalizing the standard W∞ algebra, viewed as a tensor operator algebra of SU(1, 1) in a grouptheoretic framework. Here we interpret W∞(N+, N−) either as an infinite continuation of the pseudo-unitary symmetry U(N+, N−), or as a “higher-U(N+, N−)-spin extension” of the diffeomorphism algebra diff(N+, N−) of the N = N++N− tor...

متن کامل

Oscillator Realization of Higher-U(N+, N−)-Spin Lie Algebras of W∞-type and Quantized Symplectic Diffeomorphisms

This article is a further contribution to our research [1] into a class of infinite-dimensional Lie algebras L∞(N+, N−) generalizing the standard W∞ algebra, viewed as a tensor operator algebra of SU(1, 1) in a group-theoretic framework. Here we interpret L∞(N+, N−) either as a infinite continuation of pseudo-unitary symmetries U(N+, N−), or as a “higher-U(N+, N−)-spin extension” of the diffeom...

متن کامل

Oscillator Realization of Higher-U(N+, N−)-Spin Algebras of W∞-type and Quantized Simplectic Diffeomorphisms

This article is a further contribution to our research [1] into a class of infinite-dimensional Lie algebras L∞(N+, N−) generalizing the standardW∞ algebra, viewed as a tensor operator algebra of SU(1, 1) in a group-theoretic framework. Here we interpret L∞(N+, N−) either as infinite continuations of pseudo-unitary symmetries or as “higher-U(N+, N−)spin extensions” of the diffeomorphism algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008